Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Appl Spectrosc. 2006 Oct;60(10):1134-41.

Identifying chemical changes in subchondral bone taken from murine knee joints using Raman spectroscopy.

Author information

  • 1Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.

Abstract

Application of Raman spectroscopy to analysis of subchondral bone is described. The effect of cartilage health on subchondral bone has been widely studied using radiological and histological methods; however, there is no method to directly assay mineral components. We present Raman spectra of femur condyles and observe mineral bands that arise from the subchondral bone. In two separate experiments, transgenic mouse models of early-onset osteoarthritis (OA) and lipoatrophy were compared to tissue from wild-type mice. Raman spectroscopy was used to identify chemical changes in the mineral of subchondral bone that may accompany or precede morphological changes that can be observed by histology. The transgenic mice were compared to age-matched wild-type mice. Subtle alterations in the mineral or collagen matrix were observed by Raman spectroscopy using established Raman markers such as the carbonate-to-phosphate ratio, mineral-to-matrix ratio (MTMR), and amide I ratio. The Raman microscope configuration enabled rapid collection of Raman spectra from the mineralized layer that lies under an intact layer of non-mineralized articular cartilage. The effect of the cartilage layer on collection of spectra is discussed. The technique proposed is capable of providing insight into the chemical changes that occur in subchondral bone on a molecular level.

PMID:
17059665
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Ingenta plc
    Loading ...
    Write to the Help Desk