Format

Send to

Choose Destination
J Neurobiol. 2006 Dec;66(14):1584-601.

Consistent dynamics suggests tight regulation of biophysical parameters in a small network of bursting neurons.

Author information

1
Institute for Nonlinear Science, University of California, San Diego, California 92093-0402, USA. aszucs@ucsd.edu

Abstract

The neuronal firing patterns in the pyloric network of crustaceans are remarkably consistent among animals. Although this characteristic of the pyloric network is well-known, the biophysical mechanisms underlying the regulation of the systems output are receiving renewed attention. Computer simulations of the pyloric network recently demonstrated that consistent motor output can be achieved from neurons with disparate biophysical parameters among animals. Here we address this hypothesis by pharmacologically manipulating the pyloric network and analyzing the emerging voltage oscillations and firing patterns. Our results show that the pyloric network of the lobster stomatogastric ganglion maintains consistent and regular firing patterns even when entire populations of specific voltage-gated channels and synaptic receptors are blocked. The variations of temporal parameters used to characterize the burst patterns of the neurons as well as their intraburst spike dynamics do not display statistically significant increase after blocking the transient K-currents (with 4-aminopyridine), the glutamatergic inhibitory synapses (with picrotoxin), or the cholinergic synapses (with atropine) in pyloric networks from different animals. These data suggest that in this very compact circuit, the biophysical parameters are cell-specific and tightly regulated.

PMID:
17058195
DOI:
10.1002/neu.20325
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center