Format

Send to

Choose Destination
See comment in PubMed Commons below
Genetics. 2006 Dec;174(4):1789-800. Epub 2006 Oct 22.

DNA damage checkpoints are involved in postreplication repair.

Author information

1
Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.

Abstract

Saccharomyces cerevisiae MMS2 encodes a ubiquitin-conjugating enzyme variant, belongs to the error-free branch of the RAD6 postreplication repair (PRR) pathway, and is parallel to the REV3-mediated mutagenesis branch. A mutation in genes of either the MMS2 or the REV3 branch does not result in extreme sensitivity to DNA-damaging agents; however, deletion of both subpathways of PRR results in a synergistic phenotype. Nevertheless, the double mutant is not as sensitive to DNA-damaging agents as a rad6 or rad18 mutant defective in the entire PRR pathway, suggesting the presence of an additional subpathway within PRR. A synthetic lethal screen was employed in the presence of a sublethal dose of a DNA-damaging agent to identify novel genes involved in PRR, which resulted in the isolation of RAD9 as a candidate PRR gene. Epistatic analysis showed that rad9 is synergistic to both mms2 and rev3 with respect to killing by methyl methanesulfonate (MMS), and the triple mutant is nearly as sensitive as the rad18 single mutant. In addition, rad9 rad18 is no more sensitive to MMS than the rad18 single mutant, suggesting that rad9 plays a role within the PRR pathway. Moreover, deletion of RAD9 reduces damage-induced mutagenesis and the mms2 spontaneous and induced mutagenesis is partially dependent on the RAD9 gene. We further demonstrated that the observed synergistic interactions apply to any two members between different branches of PRR and G1/S and G2/M checkpoint genes. These results suggest that a damage checkpoint is essential for tolerance mediated by both the error-free and error-prone branches of PRR.

PMID:
17057245
PMCID:
PMC1698651
DOI:
10.1534/genetics.106.056283
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center