Format

Send to

Choose Destination
See comment in PubMed Commons below
J Immunol. 2006 Nov 1;177(9):6030-7.

IL-10 signaling is essential for 1,25-dihydroxyvitamin D3-mediated inhibition of experimental autoimmune encephalomyelitis.

Author information

1
Department of Nutritional Sciences, College of Agricultural and Life Sciences, University of Wisconsin, 433 Babcock Drive, Madison, WI 53706, USA.

Abstract

Multiple sclerosis (MS) results from an aberrant, neuroantigen-specific, T cell-mediated autoimmune response. Because MS prevalence and severity decrease sharply with increasing sunlight exposure, and sunlight supports vitamin D(3) synthesis, we proposed that vitamin D(3) and 1,25-dihydroxyvitamin D(3) (1,25-(OH)(2)D(3)) may protect against MS. In support of this hypothesis, 1,25-(OH)(2)D(3) strongly inhibited experimental autoimmune encephalomyelitis (EAE). This inhibition required lymphocytes other than the encephalitogenic T cells. In this study, we tested the hypothesis that 1,25-(OH)(2)D(3) might inhibit EAE through the action of IL-10-producing regulatory lymphocytes. We report that vitamin D(3) and 1,25-(OH)(2)D(3) strongly inhibited myelin oligodendrocyte peptide (MOG(35-55))-induced EAE in C57BL/6 mice, but completely failed to inhibit EAE in mice with a disrupted IL-10 or IL-10R gene. Thus, a functional IL-10-IL-10R pathway was essential for 1,25-(OH)(2)D(3) to inhibit EAE. The 1,25-(OH)(2)D(3) also failed to inhibit EAE in reciprocal, mixed bone marrow chimeras constructed by transferring IL-10-deficient bone marrow into irradiated wild-type mice and vice versa. Thus, 1,25-(OH)(2)D(3) may be enhancing an anti-inflammatory loop involving hemopoietic cell-produced IL-10 acting on brain parenchymal cells and vice versa. If this interpretation is correct, and humans have a similar bidirectional IL-10-dependent loop, then an IL-10-IL-10R pathway defect could abrogate the anti-inflammatory and neuro-protective functions of sunlight and vitamin D(3). In this way, a genetic IL-10-IL-10R pathway defect could interact with an environmental risk factor, vitamin D(3) insufficiency, to increase MS risk and severity.

PMID:
17056528
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center