Send to

Choose Destination
See comment in PubMed Commons below
J Bacteriol. 1991 Mar;173(5):1607-16.

Analysis of the V antigen lcrGVH-yopBD operon of Yersinia pseudotuberculosis: evidence for a regulatory role of LcrH and LcrV.

Author information

Department of Cell and Molecular Biology, University of Umeå, Sweden.


Virulent Yersinia species possess a common plasmid that encodes essential virulence determinants (Yops) which are regulated by the extracellular stimuli Ca2+ and temperature. The V antigen operon was recently shown to be involved in the Ca2(+)-regulated negative pathway (A. Forsberg and H. Wolf-Watz, Mol. Microbiol. 2:121-133, 1988). We show here that the V antigen-containing operon of Yersinia pseudotuberculosis is a polycistronic operon having the gene order lcrGVH-yopBD. DNA sequencing analysis of lcrGVH revealed a high homology to the corresponding genes of Yersinia pestis. LcrG was conserved and LcrH showed only one amino acid difference, while LcrV showed only 96.6% identity. The amino acid substitutions of LcrV occurred in the central domain of the protein, while the two ends of the protein were conserved. Northern (RNA) blotting experiments showed that the operon is regulated at the transcriptional level by the extracellular stimuli temperature and calcium. One 4.6-kb transcriptional product of the operon was identified. This mRNA is rapidly processed at its 5' end, resulting in different mRNA species of variable stability. By genetic analysis, the lcrV and lcrH gene products were found to be regulatory proteins having important roles in the Ca2(+)-controlled regulation of Yop expression. The activity of LcrH is modulated by a gene product of the operon that inhibits the negative action of LcrH on yop transcription in the absence of Ca2+.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center