Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2006 Dec 15;281(50):38440-7. Epub 2006 Oct 18.

Amyloid-beta-(1-42) increases ryanodine receptor-3 expression and function in neurons of TgCRND8 mice.

Author information

1
Institute for Nutrisciences and Health, National Research Council of Canada, 93 Mount Edward Road, Charlottetown, Prince Edward Island C1A 5T1.

Abstract

Disruption of intracellular calcium homeostasis precedes the neurodegeneration that occurs in Alzheimer disease (AD). Of the many neuronal calcium-regulating proteins, we focused on endoplasmic reticulum (ER)-resident ryanodine receptors (RyRs) because they are increased in the hippocampus of mice expressing mutant presenilin-1 and are associated with neurotoxicity. Others have observed that ryanodine binding is elevated in human postmortem hippocampal regions suggesting that RyR(s) are involved in AD pathogenesis. Here we report that extracellular amyloid-beta(Abeta)-(1-42) specifically increased RyR-3, but not RyR-1 or RyR-2, gene expression in cortical neurons from C57Bl6 mice. Furthermore, endogenously produced Abeta-(1-42) increased RyR-3 mRNA and protein in cortical neurons from transgenic (Tg)CRND8 mice, a mouse model of AD. Increased RyR-3 mRNA and protein was also observed in brain tissue from 4- to 4.5-month-old Tg animals compared with non-Tg littermate controls. In experiments performed in nominal extracellular calcium, neurons from Tg mice had significant increases in intracellular calcium following ryanodine or glutamate treatment compared with littermate controls, which was abolished by treatment with small interfering RNA directed to RyR-3, indicating that the higher levels of calcium originated from RyR-3-regulated stores. Taken together, these observations suggest that Abeta-(1-42)-mediated changes in intracellular calcium homeostasis is regulated in part through a direct increase of RyR-3 expression and function.

PMID:
17050533
DOI:
10.1074/jbc.M606736200
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center