Format

Send to

Choose Destination
See comment in PubMed Commons below
Photochem Photobiol Sci. 2006 Sep;5(9):799-807. Epub 2006 Aug 4.

Cellular responses of the ciliate, Tetrahymena thermophila, to far infrared irradiation.

Author information

1
Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan. shiurba@waseda.jp

Abstract

Infrared rays from sunlight permeate the earth's atmosphere, yet little is known about their interactions with living organisms. To learn whether they affect cell structure and function, we tested the ciliated protozoan, Tetrahymena thermophila. These unicellular eukaryotes aggregate in swarms near the surface of freshwater habitats, where direct and diffuse solar radiation impinge upon the water-air interface. We report that populations irradiated in laboratory cultures grew and mated normally, but major changes occurred in cell physiology during the stationary phase. Early on, there were significant reductions in chromatin body size and the antibody reactivity of methyl groups on lysine residues 4 and 9 in histone H3. Later, when cells began to starve, messenger RNAs for key proteins related to chromatin structure, intermediary metabolism and cellular motility increased from two- to nearly nine-fold. Metabolic activity, swimming speed and linearity of motion also increased, and spindle shaped cells with a caudal cilium appeared. Our findings suggest that infrared radiation enhances differentiation towards a dispersal cell-like phenotype in saturated populations of Tetrahymena thermophila.

PMID:
17047831
DOI:
10.1039/b601741j
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Royal Society of Chemistry
    Loading ...
    Support Center