Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochim Biophys Acta. 2006 Dec;1763(12):1496-510. Epub 2006 Sep 14.

Plant peroxisomes respire in the light: some gaps of the photorespiratory C2 cycle have become filled--others remain.

Author information

1
Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Georg-August-University of Goettingen, Justus-von-Liebig-Weg 11, D-37077 Goettingen, Germany. sreuman@gwdg.de

Abstract

The most prominent role of peroxisomes in photosynthetic plant tissues is their participation in photorespiration, a process also known as the oxidative C2 cycle or the oxidative photosynthetic carbon cycle. Photorespiration is an essential process in land plants, as evident from the conditionally lethal phenotype of mutants deficient in enzymes or transport proteins involved in this pathway. The oxidative C2 cycle is a salvage pathway for phosphoglycolate, the product of the oxygenase activity of ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO), to the Calvin cycle intermediate phosphoglycerate. The pathway is highly compartmentalized and involves reactions in chloroplasts, peroxisomes, and mitochondria. The H2O2-producing enzyme glycolate oxidase, catalase, and several aminotransferases of the photorespiratory cycle are located in peroxisomes, with catalase representing the major constituent of the peroxisomal matrix in photosynthetic tissues. Although photorespiration is of major importance for photosynthesis, the identification of the enzymes involved in this process has only recently been completed. Only little is known about the metabolite transporters for the exchange of photorespiratory intermediates between peroxisomes and the other organelles involved, and about the regulation of the photorespiratory pathway. This review highlights recent developments in understanding photorespiration and identifies remaining gaps in our knowledge of this important metabolic pathway.

PMID:
17046077
DOI:
10.1016/j.bbamcr.2006.09.008
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center