Format

Send to

Choose Destination
J Am Coll Cardiol. 2006 Oct 17;48(8):1688-97. Epub 2006 Sep 27.

Attenuation by metallothionein of early cardiac cell death via suppression of mitochondrial oxidative stress results in a prevention of diabetic cardiomyopathy.

Author information

1
Department of Medicine, the University of Louisville, Louisville, Kentucky, USA. L0cai001@louisville.edu

Abstract

OBJECTIVES:

We aimed to test whether attenuation of early-phase cardiac cell death can prevent diabetic cardiomyopathy.

BACKGROUND:

Our previous study showed that cardiac apoptosis as a major early cellular response to diabetes is induced by hyperglycemia-derived oxidative stress that activates a mitochondrial cytochrome c-mediated caspase-3 activation pathway. Metallothionein (MT) as a potent antioxidant prevents the development of diabetic cardiomyopathy.

METHODS:

Diabetes was induced by a single dose of streptozotocin (STZ) (150 mg/kg) in cardiac-specific, metallothionein-overexpressing transgenic (MT-TG) mice and wild-type (WT) controls. On days 7, 14, and 21 after STZ treatment, cardiac apoptosis was examined by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay and caspase-3 activation. Cardiomyopathy was evaluated by cardiac ultrastructure and fibrosis in the diabetic mice 6 months after STZ treatment.

RESULTS:

A significant reduction in diabetes-induced increases in TUNEL-positive cells, caspase-3 activation, and cytochrome c release from mitochondria was observed in the MT-TG mice as compared to WT mice. Cardiac protein nitration (3-nitrotyrosine [3-NT]) and lipid peroxidation were significantly increased, and there was an increase in mitochondrial oxidized glutathione and a decrease in mitochondrial reduced glutathione in the WT, but not in the MT-TG, diabetic mice. Double staining for cardiomyocytes with alpha sarcomeric actin and caspase-3 or 3-NT confirmed the cardiomyocyte-specific effects. A significant prevention of diabetic cardiomyopathy and enhanced animal survival were observed in the MT-TG diabetic mice as compared to WT diabetic mice.

CONCLUSIONS:

These results suggest that attenuation of early-phase cardiac cell death by MT results in a significant prevention of the development of diabetic cardiomyopathy. This process is mediated by MT suppression of mitochondrial oxidative stress.

PMID:
17045908
DOI:
10.1016/j.jacc.2006.07.022
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center