Send to

Choose Destination
J Pharmacol Exp Ther. 2007 Jan;320(1):475-85. Epub 2006 Oct 12.

Pharmacologic characterization of the cloned human trace amine-associated receptor1 (TAAR1) and evidence for species differences with the rat TAAR1.

Author information

Eli Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Mail Drop 0510, Indianapolis, IN 46285, USA.


The hemagglutinin-tagged human trace amine-associated receptor1 (TAAR1) was stably coexpressed with rat Galpha(s) in the AV12-664 cell line, and receptor activation was measured as the stimulation of cAMP formation. After blockade of endogenously expressed alpha2- and beta-adrenoceptors with 2-[2-(2-methoxy-1,4-benzodioxanyl)]-imidazoline hydrochloride (2-methoxyidazoxan, RX821002) and alprenolol, respectively, the resulting pharmacology was consistent with that of a unique receptor subtype. beta-Phenylethylamine (beta-PEA), the putative endogenous ligand, gave an EC50 of 106 +/- 5 nM in the assay. For a series of beta-PEA analogs used to explore the pharmacophore, small substituents at ring positions 3 and/or 4 generally resulted in compounds having lower potency than beta-PEA, although several were as potent as beta-PEA. However, small substituents at ring position 2 resulted in a number of compounds having potencies as good as or better than beta-PEA. A number of nonselective antagonists known to share affinity for multiple monoaminergic receptors were evaluated for their ability to inhibit beta-PEA stimulation of the human TAAR1. None had an IC50 <10 microM. For comparison, the rat TAAR1 receptor was expressed in the AV12-664 cell line. A number of agonist compounds had significantly different relative potencies between the rat and human TAAR1, demonstrating a significant species difference between the rat and human TAAR1. The TAAR1 receptor exhibits a pharmacologic profile uniquely different from those of classic monoaminergic receptors, consistent with the structural information that places them in a distinct family of receptors. This unique pharmacologic profile suggests the potential for development of TAAR-selective agonists and antagonists to study their physiologic roles.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center