Send to

Choose Destination
See comment in PubMed Commons below
Nucleic Acids Res. 2006;34(19):5650-9. Epub 2006 Oct 11.

The key DNA-binding residues in the C-terminal domain of Mycobacterium tuberculosis DNA gyrase A subunit (GyrA).

Author information

State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.


As only the type II topoisomerase is capable of introducing negative supercoiling, DNA gyrase is involved in crucial cellular processes. Although the other domains of DNA gyrase are better understood, the mechanism of DNA binding by the C-terminal domain of the DNA gyrase A subunit (GyrA-CTD) is less clear. Here, we investigated the DNA-binding sites in the GyrA-CTD of Mycobacterium tuberculosis gyrase through site-directed mutagenesis. The results show that Y577, R691 and R745 are among the key DNA-binding residues in M.tuberculosis GyrA-CTD, and that the third blade of the GyrA-CTD is the main DNA-binding region in M.tuberculosis DNA gyrase. The substitutions of Y577A, D669A, R691A, R745A and G729W led to the loss of supercoiling and relaxation activities, although they had a little effect on the drug-dependent DNA cleavage and decatenation activities, and had no effect on the ATPase activity. Taken together, these results showed that the GyrA-CTD is essential to DNA gyrase of M.tuberculosis, and promote the idea that the M.tuberculosis GyrA-CTD is a new potential target for drug design. It is the first time that the DNA-binding sites in GyrA-CTD have been identified.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems Icon for PubMed Central
    Loading ...
    Support Center