Format

Send to

Choose Destination
Mol Ecol. 2006 Oct;15(12):3769-86.

Immigration, species radiation and extinction in a highly diverse songbird lineage: white-eyes on Indian Ocean islands.

Author information

1
School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK. b.warren@rading.ac.uk

Abstract

Molecular phylogenetic hypotheses of species-rich lineages in regions where geological history can be reliably inferred may provide insights into the scale of processes driving diversification. Here we sample all extant or recently extinct white-eye (Zosterops) taxa of the southwest Indian Ocean, combined with samples from all principal continental lineages. Results support a high dispersal capability, with at least two independent continental sources for white-eyes of the region. An early (within 1.8 million years ago) expansion into the Indian Ocean may have originated either from Asia or Africa; the three resulting lineages show a disparate distribution consistent with considerable extinction following their arrival. Africa is supported as the origin of a later expansion into the region (within 1.2 million years ago). On two islands, a pair of Zosterops species derived from independent immigrations into the Indian Ocean co-occur or may have formerly co-occurred, providing strong support for their origin by double-island colonization rather than within-island (sympatric or microallopatric) speciation. On Mauritius and La Réunion, phylogenetic placement of sympatric white-eyes allow us to rule out a scenario in which independent within-island speciation occurred on both islands; one of the species pairs must have arisen by double colonization, while the other pair is likely to have arisen by the same mechanism. Long-distance immigration therefore appears to be responsible for much of the region's white-eye diversity. Independent immigrations into the region have resulted in lineages with mutually exclusive distributions and it seems likely that competition with congeneric species, rather than arrival frequency, may limit present-day diversity.

[Indexed for MEDLINE]

Publication type, MeSH terms, Substance, Secondary source ID

Publication type

MeSH terms

Substance

Secondary source ID

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center