Format

Send to

Choose Destination
See comment in PubMed Commons below
Cancer Res. 2006 Oct 1;66(19):9736-43.

Antitumor activity of an oncolytic adenovirus-delivered oncogene small interfering RNA.

Author information

1
The Mary Crowley Medical Research Center, Dallas, Texas.

Abstract

Despite successes in animal models, cancer gene therapy with small interfering RNAs (siRNA) is hindered by the lack of an optimal delivery platform. We examined the applicability of the replication-competent, oncolytic adenovirus, ONYX-411, to deliver a mutant K-ras siRNA transgene to human cancer cells. Proof-of-principle studies showed an additive tumor growth-inhibitory response through siRNA-mediated K-ras knockdown and ONYX-411-mediated cancer cell lysis. A novel construct, termed Internavec (for interfering RNA vector), was generated by cloning a K-ras(v12)-specific siRNA(ras-4) hairpin construct under the control of the human H1 promoter into the deleted E3b region of ONYX-411. Internavec acquired an increase in potency of approximately 10-fold in human cancer cells expressing the relevant K-ras(v12) mutation (H79, H441, and SW480), as defined by a reduction in the effective dose needed to achieve 50% growth inhibition (ED(50)). Internavec remained attenuated in nonmalignant epithelial cells. Daily intratumoral injections of Internavec (five daily injections of 1 x 10(8) plaque-forming units) significantly reduced the growth of s.c. H79 pancreatic cancer xenografts in nu/nu mice by 85.5%, including complete growth suppression in three of five mice. Parental ONYX-411 or ONYX-411-siRNA(GFP) was markedly less effective (47.8% growth reduction, P = 0.03; and 44.1% growth reduction, P = 0.03, respectively). siRNA(ras) transgene activity contributed to cell cycle blockage, increased apoptosis, and marked down-regulation of Ras signaling-related gene expression (AKT2, GSK3 beta, E2F2, and MAP4K5). These findings indicate that Internavec can generate a two-pronged attack on tumor cells through oncogene knockdown and viral oncolysis, resulting in a significantly enhanced antitumor outcome.

PMID:
17018633
DOI:
10.1158/0008-5472.CAN-06-1617
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center