Format

Send to

Choose Destination
See comment in PubMed Commons below
Exp Cell Res. 1990 Dec;191(2):299-304.

Bifunctional effects of transforming growth factor-beta (TGF-beta) on endothelial cell growth correlate with phenotypes of TGF-beta binding sites.

Author information

1
W. Alton Jones Cell Science Center, Inc., Lake Placid, New York 12946.

Abstract

Transforming growth factor-beta (TGF-beta) is a bifunctional, dose-dependent regulator of endothelial cell proliferation induced in vitro by heparin-binding growth factor 1 (HBGF-1, acidic FGF). Here we have examined the relationship between endothelial cell growth and the expression of cell surface binding sites for TGF-beta and HBGF-1. Fetal bovine heart endothelial cell (FBHEC) growth was stimulated by low concentrations of TGF-beta and inhibited by high concentrations of TGF-beta while expressing two distinct classes of TGF-beta binding sites with binding constants of 24 pM (6300 sites/cell) and 900 pM (12,000 sites/cell). In contrast, human umbilical vein endothelial cells (HUVEC), whose growth was slightly promoted by TGF-beta, exhibited a single class of high-affinity TGF-beta binding sites (Kd = 45 pM, 4500 sites/cell). Affinity crosslinking using [125I]TGF-beta showed that FBHEC expressed two distinct low molecular weight TGF-beta binding sites (Mr 85,000 and 58,000), while HUVEC expressed a single type of low molecular weight TGF-beta binding site (Mr 85,000). As detected by binding of [125I]HBGF-1, preincubation of FBHEC with high concentrations of TGF-beta transmodulated the expression of high-affinity HBGF-1 receptors. In contrast, no transmodulation of HBGF-1 receptors occurred in FBHEC during preincubation with low concentrations of TGF-beta. Furthermore, preincubation of HUVEC with TGF-beta did not transmodulate the expression of HBGF-1 receptors. The data suggest that the ability of TGF-beta to stimulate or inhibit endothelial cell proliferation in a dose-dependent manner correlated with the expression of specific TGF-beta binding site subtypes and involved the transmodulation of HBGF-1 receptors.

PMID:
1701723
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center