Send to

Choose Destination
Free Radic Biol Med. 2006 Oct 15;41(8):1266-71. Epub 2006 Jul 15.

One-electron oxidation of catecholamines generates free radicals with an in vitro toxicity correlating with their lifetime.

Author information

Department of Biomedicine, Section for Biochemistry and Molecular Biology, University of Bergen, Jonas Lies Vei 91, N-5009 Bergen, Norway.


One-electron oxidation of dopamine by ferricyanide generates a highly reactive free radical intermediate that inactivates the V-type H(+)-ATPase proton pump in catecholamine storage vesicles, i.e., the driving force in both the vesicular uptake and the storage of catecholamines, in a cell-free in vitro model system at pH 7.0. Electron paramagnetic resonance spectroscopy revealed that a radical with g=2.0045, formed by this oxidation, was relatively long-lived (t(1/2) obs=79 s at pH 6.5 and 25 degrees C). Experimental evidence is presented that the observed radical most likely represents dopamine semiquinone free radical, although an o-quinone free radical cannot be ruled out. Oxidation of noradrenaline and adrenaline by ferricyanide generated similar isotropic radicals, but of shorter half-lives (i.e., 43 and 5.3 s, respectively), and the efficacy of inactivation of the H(+)-ATPase correlated with the half-life of the respective catecholamine free radical (i.e., dopamine >noradrenaline>>adrenaline). Thus, the generation of relatively long-lived semiquinone free radicals, although at low concentrations, in dopaminergic and noradrenergic neurons may represent a common mechanism of cytotoxicity linked to neurodegeneration of the respective neurons related to Parkinson disease.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center