Format

Send to

Choose Destination
Biochim Biophys Acta. 1990 Oct 22;1047(1):41-8.

Inhibition of the phosphatidylinositol-specific phospholipase C from Bacillus cereus by a monoclonal antibody binding to a region with sequence similarity to eukaryotic phospholipases.

Author information

1
Institute of Molecular Biology, University of Oregon, Eugene 97403.

Abstract

Bacterial phosphatidylinositol-specific phospholipases C (PI-PLC) display similar substrate specificity as their eukaryotic counterparts involved in signal transduction of insulin and Ca2(+)-mobilizing hormones, and are used in the study of the novel glycosylphosphatidylinositol-protein anchors (GPI-anchors). For the investigation of structure-function aspects of the PI-PLC secreted from Bacillus cereus cells, a panel of murine monoclonal antibodies was generated and shown to be specific for the PI-PLC polypeptide in enzyme-linked immunosorbent assays and Western blots. Two of the monoclonals inhibited reactions catalyzed by the bacterial enzyme in vitro: hydrolysis of phosphatidylinositol and the release of bovine erythrocyte acetylcholinesterase from its GPI-anchor. At saturating concentrations of inhibitory antibody only a few percent of the enzyme activity remained. The epitope recognized by one of the inhibitory antibodies, A72-24, was mapped by proteolytic digestion, protein sequencing, and Western blotting of the generated fragments. The data indicate that at least part of the epitope resides within an 8 kDa-stretch of the bacterial PI-PLC (Gln-45 - Lys-122). Essentially the same segment of the bacterial polypeptide has previously been shown to display limited amino acid sequence similarity with several eukaryotic PI-specific phospholipases C (Kuppe, A., Evans, L.M., McMillen, D.A. and Griffith, O.H. (1989) J. Bacteriol. 171, 6077-6083). The results reported here suggest that the conserved peptide of these enzymes may contain functionally important residues.

PMID:
1701099
DOI:
10.1016/0005-2760(90)90258-y
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center