Send to

Choose Destination
See comment in PubMed Commons below
Genes Brain Behav. 2006 Oct;5(7):540-51.

Phosphodiesterase 1B differentially modulates the effects of methamphetamine on locomotor activity and spatial learning through DARPP32-dependent pathways: evidence from PDE1B-DARPP32 double-knockout mice.

Author information

  • 1Division of Developmental Biology, Division of Neurology, Cincinnati Children's Research Foundation and University of Cincinnati College of Medicine, Cincinnati, OH 45229-3039, USA.


Mice lacking phosphodiesterase 1B (PDE1B) exhibit an exaggerated locomotor response to D-methamphetamine and increased in vitro phosphorylation of DARPP32 (dopamine- and cAMP-regulated phosphoprotein, M r 32 kDa) at Thr34 in striatal brain slices treated with the D1 receptor agonist, SKF81297. These results indicated a possible regulatory role for PDE1B in pathways involving DARPP32. Here, we generated PDE1B x DARPP32 double-knockout (double-KO) mice to test the role of PDE1B in DARPP32-dependent pathways in vivo. Analysis of the response to d-methamphetamine on locomotor activity showed that the hyperactivity experienced by PDE1B mutant mice was blocked in PDE1B-/- x DARPP32-/- double-KO mice, consistent with participation of PDE1B and DARPP32 in the same pathway. Further behavioral testing in the elevated zero-maze revealed that DARPP32-/- mice showed a less anxious phenotype that was nullified in double-mutant mice. In contrast, in the Morris water maze, double-KO mice showed deficits in spatial reversal learning not observed in either single mutant compared with wild-type mice. The data suggest a role for PDE1B in locomotor responses to psychostimulants through modulation of DARPP32-dependent pathways; however, this modulation does not necessarily impact other behaviors, such as anxiety or learning. Instead, the phenotype of double-KOs observed in these latter tasks may be mediated through independent pathways.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center