Format

Send to

Choose Destination
Reproduction. 2006 Oct;132(4):559-70.

Diploid porcine parthenotes produced by inhibition of first polar body extrusion during in vitro maturation of follicular oocytes.

Author information

1
Reproductive Biology Unit, Department of Animal Science, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan.

Abstract

We investigated nuclear progression and in vitro embryonic development after parthenogenetic activation of porcine oocytes exposed to cytochalasin B (CB) during in vitro maturation (IVM). Nuclear progression was similar in control oocytes and oocytes matured in the presence of 1 microg/ml CB (IVM-CB group) by 37 h IVM; at this time the proportion of oocytes that had reached or passed through the anaphase-I stage did not differ significantly between the IVM-CB and the control groups (61.3 and 69.9% respectively; P < 0.05). After IVM for 37 h, no polar body extrusion was observed in the IVM-CB group. In these oocytes, the two lumps of homologous chromosomes remained in the ooplasm after their segregation and turned into two irregular sets of condensed chromosomes. By 41 h IVM, the double sets of chromosomes had reunited in 89.5% IVM-CB oocytes and formed a single large metaphase plate, whereas 68.8% of the control oocytes had reached the metaphase-II stage by this time. When IVM-CB oocytes cultured for 46 h were stimulated with an electrical pulse and subsequently cultured for 8 h without CB, 39.0% of them extruded a polar body and 82.9% of them had a female pronucleus. Chromosome analysis revealed that the majority of oocytes that extruded a polar body were diploid in both the control and the IVM-CB groups. However, the incidence of polyploidy in the IVM-CB group was higher than that in the control group (P < 0.05). In vitro development of diploid parthenotes in the control and the IVM-CB groups was similar in terms of blastocyst formation rates (45.8 and 42.8% respectively), number of blastomeres (39.9 and 44.4 respectively), the percentage of dead cells (4.3 and 2.9% respectively), and the frequency of apoptotic cells (7.3 and 6.3% respectively). Tetraploid embryos had a lower blastocyst formation rate (25.5%) and number of cells (26.2); however, the proportion of apoptotic nuclei (7.0%) was similar to that in diploid parthenotes. These results suggest that the proportion of homozygous and heterozygous genes does not affect in vitro embryo development to the blastocyst stage.

PMID:
17008467
DOI:
10.1530/rep.1.01216
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Sheridan PubFactory
Loading ...
Support Center