Format

Send to

Choose Destination
See comment in PubMed Commons below
Invest Ophthalmol Vis Sci. 2006 Oct;47(10):4245-53.

The Rx-like homeobox gene (Rx-L) is necessary for normal photoreceptor development.

Author information

1
Center for Molecular and Human Genetics, Columbus Children's Research Institute, Ohio State University, Columbus, OH 43205, USA.

Abstract

PURPOSE:

The retinal homeobox (Rx) gene plays an essential role in retinal development. An Rx-like (Rx-L) gene from Xenopus laevis has been identified. The purpose of this study was to analyze the function of Rx-L in the developing retina.

METHODS:

DNA-binding properties of Rx-L were analyzed by electrophoretic mobility shift assay (EMSA), with in vitro-translated proteins and radiolabeled oligonucleotide probe. The Rx-L expression pattern was analyzed by in situ hybridization using whole or sectioned embryos and digoxigenin-labeled antisense riboprobes. Rx-L loss of function was studied by using antisense morpholino oligonucleotides targeted to the Rx-L translation initiation site. Embryos injected with control or Rx-L morpholinos were analyzed at stage 41 or 45.

RESULTS:

Rx-L shares homology with Rx at the homeo-, OAR, and Rx domains, but lacks an octapeptide motif. Rx-L is expressed in the developing retina beginning in the early tailbud stage. In the maturing retina, Rx-L expression is restricted primarily to the developing photoreceptor layer and the ciliary marginal zone. Rx-L can bind a photoreceptor conserved element-1 (PCE-1) oligonucleotide, an element conserved among all known photoreceptor gene promoters. In a promoter activity assay, Rx-L functions as a stronger transcriptional activator than Rx. Antisense morpholino-mediated knockdown of Rx-L expression resulted in a decrease in rhodopsin and red cone opsin expression levels in Xenopus retinas. Injection of the Rx-L antisense morpholino oligonucleotide also resulted in a decrease in the length of both rod and cone outer segments.

CONCLUSIONS:

The results suggest that Rx-L functions to regulate rod and cone development by activating photoreceptor-specific gene expression.

PMID:
17003412
PMCID:
PMC2824340
DOI:
10.1167/iovs.06-0167
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems Icon for PubMed Central
    Loading ...
    Support Center