Send to

Choose Destination
See comment in PubMed Commons below
Mol Biol Evol. 2007 Jan;24(1):90-101. Epub 2006 Sep 22.

Fossil calibration of molecular divergence infers a moderate mutation rate and recent radiations for pinus.

Author information

Department of Botany and Plant Pathology, Oregon State University, USA.

Erratum in

  • Mol Biol Evol. 2007 Feb;24(2):620. Ann, Willyard [corrected to Willyard, Ann].


Silent mutation rate estimates for Pinus vary 50-fold, ranging from angiosperm-like to among the slowest reported for plants. These differences either reflect extraordinary genomic processes or inconsistent fossil calibration, and they have important consequences for population and biogeographical inferences. Here we estimate mutation rates from 4 Pinus species that represent the major lineages using 11 nuclear and 4 chloroplast loci. Calibration was tested at the divergence of Pinus subgenera with the oldest leaf fossil from subg. Strobus (Eocene; 45 MYA) or a recently published subg. Strobus wood fossil (Cretaceous; 85 MYA). These calibrations place the origin of Pinus 190-102 MYA and give absolute silent rate estimates of 0.70-1.31x10(-9) and 0.22-0.42x10(-9).site-1.year-1 for the nuclear and chloroplast genomes, respectively. These rates are approximately 4- to 20-fold slower than angiosperms, but unlike many previous estimates, they are more consistent with the high per-generation deleterious mutation rates observed in pines. Chronograms from nuclear and chloroplast genomes show that the divergence of subgenera accounts for about half of the time since Pinus diverged from Picea, with subsequent radiations occurring more recently. By extending the sampling to encompass the phylogenetic diversity of Pinus, we predict that most extant subsections diverged during the Miocene. Moreover, subsect. Australes, Ponderosae, and Contortae, containing over 50 extant species, radiated within a 5 Myr time span starting as recently as 18 MYA. An Eocene divergence of pine subgenera (using leaf fossils) does not conflict with fossil-based estimates of the Pinus-Picea split, but a Cretaceous divergence using wood fossils accommodates Oligocene fossils that may represent modern subsections. Because homoplasy and polarity of character states have not been tested for fossil pine assignments, the choice of fossil and calibration node represents a significant source of uncertainty. Based on several lines of evidence (including agreement with ages inferred using calibrations outside of Pinus), we conclude that the 85 MYA calibration at the divergence of pine subgenera provides a reasonable lower bound and that further refinements in age and mutation rate estimates will require a synthetic examination of pine fossil history.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems
    Loading ...
    Support Center