Send to

Choose Destination
See comment in PubMed Commons below
Clin Endocrinol (Oxf). 2006 Oct;65(4):423-8.

Lower ability to oxidize lipids in adult patients with growth hormone (GH) deficiency: reversal under GH treatment.

Author information

  • 1Service Central de Physiologie Clinique, Centre d'Exploration et de Réadaptation des Anomalies du Métabolisme Musculaire, CHU Montpellier, France.



The aim of the study was to characterize lipid oxidation at exercise in adults with growth hormone deficiency (GHD) and to evaluate the effect of 6 and 12 months of GH replacement therapy on substrate carbohydrate (CHO) and lipid utilization at exercise.


Twenty-five patients with GHD and 40 matched controls participated in the study. Ten of the 25 GH-deficient patients were treated with recombinant GH for 12 months. Anthropometric measurements and exercise calorimetry were performed before and after treatment. Maximal fat oxidation and the crossover point [that is the percentage of the theoretical maximal power (Wmax th) where CHO become the predominant fuel used for oxidation] were determined.


The GH-deficient patients exhibited a highly significant shift in the balance of substrate oxidation during exercise, towards a decrease in fat oxidation, and a shift towards lower intensities of the crossover (52 +/- 5.5%vs. 72.6 +/- 6.6% of Wmax th, P < 0.03) and maximal fat oxidation (131.04 +/- 14 vs. 234.4 +/- 30.1 mg/min, P < 0.03) in the GHD and control groups, respectively. However, GH treatment at 6 and 12 months partially reversed this defect, resulting in an increase (+83%, P < 0.001) in the maximal ability to oxidize fat during exercise. These findings are consistent with the hypothesis that a lack of GH reduces the ability to oxidize lipids during exercise and that GH treatment restores this muscular metabolic property.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center