Send to

Choose Destination
See comment in PubMed Commons below
Mol Biol Evol. 2006 Dec;23(12):2392-404. Epub 2006 Sep 15.

Intron size, abundance, and distribution within untranslated regions of genes.

Author information

  • 1Department of Biology, Indiana University, IN, USA.


Most research concerning the evolution of introns has largely considered introns within coding sequences (CDSs), without regard for introns located within untranslated regions (UTRs) of genes. Here, we directly determined intron size, abundance, and distribution in UTRs of genes using full-length cDNA libraries and complete genome sequences for four species, Arabidopsis thaliana, Drosophila melanogaster, human, and mouse. Overall intron occupancy (introns/exon kbp) is lower in 5' UTRs than CDSs, but intron density (intron occupancy in regions containing introns) tends to be higher in 5' UTRs than in CDSs. Introns in 5' UTRs are roughly twice as large as introns in CDSs, and there is a sharp drop in intron size at the 5' UTR-CDS boundary. We propose a mechanistic explanation for the existence of selection for larger intron size in 5' UTRs, and outline several implications of this hypothesis. We found introns to be randomly distributed within 5' UTRs, so long as a minimum required exon size was assumed. Introns in 3' UTRs were much less abundant than in 5' UTRs. Though this was expected for human and mouse that have intron-dependent nonsense-mediated decay (NMD) pathways that discourage the presence of introns within the 3' UTR, it was also true for A. thaliana and D. melanogaster, which may lack intron-dependent NMD. Our findings have several implications for theories of intron evolution and genome evolution in general.

[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center