Format

Send to

Choose Destination
Bull Math Biol. 2007 Jan;69(1):395-415. Epub 2006 Sep 14.

Stochastic modeling predictions for the clearance of insoluble particles from the tracheobronchial tree of the human lung.

Author information

1
Brunnleitenweg 41, A-5061 Elsbethen, Salzburg, Austria. Robert.Sturm@sbg.ac.at

Abstract

Bronchial clearance of deposited particles was simulated using a stochastic model of the tracheobronchial tree. The clearance model introduced in this study considers (1) a continuous decrease of the mucus thickness from the trachea to the terminal bronchioles according to a linear or an exponential function, (2) the possibility of mucus discontinuities, which are mainly found in intermediate and distal airways of the tracheobronchial compartment, (3) mucus production in proximal airways, (4) a slow bronchial clearance phase due to the capture of a defined particle fraction f (s) in the periciliary sol phase, and (5) an eventual delay of the mucociliary transport at carinal ridges of airway bifurcations. Based on the concept of mucus volume conservation in single bifurcations, a reduction of the thickness of the mucus blanket from proximal to distal airways causes a significant increase of the mucus velocities in small ciliated airways compared to other stochastic modeling predictions assuming a constant thickness of the mucus layer throughout the conducting airways. This effect is further enhanced by the consideration of mucus discontinuities. In contrast, the ability of bronchial airways to produce a certain volume of mucus has a decreasing effect on the mucus velocities. In all generated clearance velocity models, mucociliary clearance is completely terminated within 24 h after exposure, consistent with the experimental evidence. Implementation of a slow bronchial clearance phase predicts a long-term retention fraction, which is fully cleared from the lung after several weeks. For 1-microm MMAD particles, 24-h retention varies between 0.42 and 0.52, in line with the suggestions of the ICRP. Mucus delay at carinal ridges only affects short-term clearance by increasing the retained particle fraction at a given time, while long-term retention is not influenced.

PMID:
16972137
DOI:
10.1007/s11538-006-9143-3
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center