Coherent control of collision processes: Penning versus associative ionization

J Chem Phys. 2006 Sep 7;125(9):094315. doi: 10.1063/1.2336430.

Abstract

Coherent control theory is applied to the control of Ne*(3s,(3)P2)+Ar((1)S0) collisions and computations are shown that display extensive control over these processes. Indeed we demonstrate that it is possible to essentially turn on and off the cross sections for both the Penning and associative ionization processes. This facility arises from the interference between matter waves induced by creating a linear superposition of the degenerate M={-2,-1,0,1,2} Zeeman sublevels of the Ne*(3s,(3)P2) target atom. The computations, conducted at collision energies in the 1-8 kcal/mole range, are based on combining, within the "rotating atom approximation," empirically derived and ab initio ionization widths.