Send to

Choose Destination
Biochemistry. 2006 Sep 19;45(37):11200-7.

Determinants of alpha-conotoxin BuIA selectivity on the nicotinic acetylcholine receptor beta subunit.

Author information

Department of Biology, University of Utah, Salt Lake City 84112-0840, USA.


Neuronal nicotinic acetylcholine receptors (nAChRs) are pentamers composed of alpha and beta subunits. Different molecular compositions of these subunits constitute various receptor subtypes that are implicated in the pathophysiology and/or treatment of several disease states but are difficult to distinguish pharmacologically. Alpha-conotoxins are a group of small, structurally defined peptides that may be used to molecularly dissect the nAChR-binding site. Heteromeric nAChRs generally contain either a beta2 or beta4 subunit in addition to an alpha subunit at the ligand-binding interface. Alpha-conotoxin BuIA kinetically distinguishes between beta2- and beta4-containing nAChRs, with long off times for the latter. Mutational studies were used to assess the influence of residues that line the putative acetylcholine-binding pocket but differ between beta2 and beta4 subunits. Residues Thr/Lys59, Val/Ile111, and Phe/Gln119 of the respective beta2 and beta4 subunits are critical to off-rate differences. Among these residues, Thr59 of nAChR beta2 may interfere with effective access to the binding site, whereas Lys59 may facilitate this binding.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for American Chemical Society Icon for PubMed Central
Loading ...
Support Center