Format

Send to

Choose Destination
See comment in PubMed Commons below
Med Phys. 2006 Aug;33(8):2955-63.

Monte Carlo study of a Cyberknife stereotactic radiosurgery system.

Author information

1
Department of Radiological Technology, Kumamoto University School of Health Sciences, Kumamoto, 862-0976, Japan. f_araki@hs.kumamoto-u.ac.jp

Abstract

This study investigated small-field dosimetry for a Cyberknife stereotactic radiosurgery system using Monte Carlo simulations. The EGSnrc/BEAMnrc Monte Carlo code was used to simulate the Cyberknife treatment head, and the DOSXYZnrc code was implemented to calculate central axis depth-dose curves, off-axis dose profiles, and relative output factors for various circular collimator sizes of 5 to 60 mm. Water-to-air stopping power ratios necessary for clinical reference dosimetry of the Cyberknife system were also evaluated by Monte Carlo simulations. Additionally, a beam quality conversion factor, kQ, for the Cyberknife system was evaluated for cylindrical ion chambers with different wall material. The accuracy of the simulated beam was validated by agreement within 2% between the Monte Carlo calculated and measured central axis depth-dose curves and off-axis dose profiles. The calculated output factors were compared with those measured by a diode detector and an ion chamber in water. The diode output factors agreed within 1% with the calculated values down to a 10 mm collimator. The output factors with the ion chamber decreased rapidly for collimators below 20 mm. These results were confirmed by the comparison to those from Monte Carlo methods with voxel sizes and materials corresponding to both detectors. It was demonstrated that the discrepancy in the 5 and 7.5 mm collimators for the diode detector is due to the water non-equivalence of the silicon material, and the dose fall-off for the ion chamber is due to its large active volume against collimators below 20 mm. The calculated stopping power ratios of the 60 mm collimator from the Cyberknife system (without a flattening filter) agreed within 0.2% with those of a 10 X 10 cm2 field from a conventional linear accelerator with a heavy flattening filter and the incident electron energy, 6 MeV. The difference in the stopping power ratios between 5 and 60 mm collimators was within 0.5% at a 10 cm depth in water. Furthermore, kQ values for the Cyberknife system were in agreement within 0.3% with those of the conventional 6 MV-linear accelerator for the cylindrical ion chambers with different wall material.

PMID:
16964874
DOI:
10.1118/1.2219774
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center