Send to

Choose Destination
See comment in PubMed Commons below
Biomaterials. 2007 Jan;28(1):78-88. Epub 2006 Sep 7.

Biofunctionalization of collagen for improved biological response: scaffolds for corneal tissue engineering.

Author information

Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ont., Canada L8S 4L7.


Residual dendrimer amine groups were modified with incorporate COOH group containing biomolecules such as cell adhesion peptides into collagen scaffolds. YIGSR, as a model cell adhesion peptide, was incorporated into both the bulk structure of the gels and onto the gel surface. The effects of the peptide modified collagen gels on corneal epithelial cell behavior were examined with an aim of improving the potential of these materials as tissue-engineering scaffolds. YIGSR was first chemically attached to dendrimers and the YIGSR attached dendrimers were then used as collagen crosslinkers, incorporating the peptide into the bulk structure of the collagen gels. YIGSR was also attached to the surface of dendrimer crosslinked collagen gels through reaction with excess amine groups. The YIGSR modified dendrimers were characterized by H-NMR and MALDI mass spectra. The amount of YIGSR incorporated into collagen gels was determined by (125)I radiolabelling at maximum to be 3.1-3.4 x 10(-2)mg/mg collagen when reacted with the bulk and 88.9-95.6 microg/cm(2) when attached to the surface. The amount of YIGSR could be tuned by varying the amount of peptide reacted with the dendrimer or the amount of modified dendrimer used in the crosslinking reaction. It was found that YIGSR incorporation into the bulk and YIGSR modification of surface promoted the adhesion and proliferation of human corneal epithelial cells as well as neurite extension from dorsal root ganglia.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center