Format

Send to

Choose Destination
Neurogastroenterol Motil. 2006 Oct;18(10):936-48.

Hyperexcitability of convergent colon and bladder dorsal root ganglion neurons after colonic inflammation: mechanism for pelvic organ cross-talk.

Author information

1
Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA. anna-malykhina@ouhsc.edu

Abstract

Clinical studies reveal concomitant occurrence of several gastrointestinal and urologic disorders, including irritable bowel syndrome and interstitial cystitis. The purpose of this study was to determine the mechanisms underlying cross-organ sensitization at the level of dorsal root ganglion (DRG) after acute and subsided gastrointestinal inflammation. DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate) and Fast Blue were injected into the distal colon and urinary bladder of male rats, respectively. Convergent DRG neurons were found in L1-L3 and L6-S2 ganglia with an average distribution of 14% +/- 2%. The resting membrane potential (RMP) of cells isolated from upper lumbar (UL) ganglia was -59.8 +/- 2.7 mV, whereas lumbosacral (LS) neurons were more depolarized (RMP = -49.4 +/- 2.1 mV, P < or = 0.05) under control conditions. Acute trinitrobenzene sulfonic acid (TNBS) colitis (3 days) decreased voltage and current thresholds for action potential firing in LS but not UL convergent capsaicin-sensitive neurons. This effect persisted for 30 days in the absence of overt colonic inflammation. The current threshold for action potential (AP) firing in UL cells was also decreased from 165.0 +/- 24.5 pA (control) to 85.0 +/- 19.1 pA at 30 days (P < or = 0.05), indicating increased excitability. The presence of a subpopulation of colon-bladder convergent DRG neurons and their persistent hyperexcitability after colonic inflammation provides a basis for pelvic organ cross-sensitization.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center