Format

Send to

Choose Destination
See comment in PubMed Commons below
Genetics. 2006 Oct;174(2):639-49. Epub 2006 Sep 7.

Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition.

Author information

1
Division of Molecular and Developmental Biology, National Institute of Genetics, Japan.

Abstract

The Tol2 element is a naturally occurring active transposable element found in vertebrate genomes. The Tol2 transposon system has been shown to be active from fish to mammals and considered to be a useful gene transfer vector in vertebrates. However, cis-sequences essential for transposition have not been characterized. Here we report the characterization of the minimal cis-sequence of the Tol2 element. We constructed Tol2 vectors containing various lengths of DNA from both the left (5') and the right (3') ends and tested their transpositional activities both by the transient excision assay using zebrafish embryos and by analyzing chromosomal transposition in the zebrafish germ lineage. We demonstrated that Tol2 vectors with 200 bp from the left end and 150 bp from the right end were capable of transposition without reducing the transpositional efficiency and found that these sequences, including the terminal inverted repeats (TIRs) and the subterminal regions, are sufficient and required for transposition. The left and right ends were not interchangeable. The Tol2 vector carrying an insert of >11 kb could transpose, but a certain length of spacer, <276 but >18 bp, between the left and right ends was necessary for excision. Furthermore, we found that a 5-bp sequence, 5'-(A/G)AGTA-3', is repeated 33 times in the essential subterminal region. Mutations in the repeat sequence at 13 different sites in the subterminal region, as well as mutations in TIRs, severely reduced the excision activity, indicating that they play important roles in transposition. The identification of the minimal cis-sequence of the Tol2 element and the construction of mini-Tol2 vectors will facilitate development of useful transposon tools in vertebrates. Also, our study established a basis for further biochemical and molecular biological studies for understanding roles of the repetitive sequence in the subterminal region in transposition.

PMID:
16959904
PMCID:
PMC1602067
DOI:
10.1534/genetics.106.060244
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center