Format

Send to

Choose Destination
See comment in PubMed Commons below
Appl Environ Microbiol. 2006 Sep;72(9):5838-45.

Distinct bacterial communities exist beneath a high Arctic polythermal glacier.

Author information

1
Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.

Abstract

Bacterial communities reside in basal ice, sediment, and meltwater in the supra-, sub-, and proglacial environments of John Evans Glacier, Nunavut, Canada. We examined whether the subglacial bacterial community shares common members with the pro- and supraglacial communities, and by inference, whether it could be derived from communities in either of these environments (e.g., by ice overriding proglacial sediments or by in-wash of surface meltwaters). Terminal restriction fragment length polymorphism analysis of bacterial 16S rRNA genes amplified from these environments revealed that the subglacial water, basal ice, and sediment communities were distinct from those detected in supraglacial meltwater and proglacial sediments, with 60 of 142 unique terminal restriction fragments (T-RFs) detected exclusively in subglacial samples and only 8 T-RFs detected in all three environments. Supraglacial waters shared some T-RFs with subglacial water and ice, likely reflecting the seasonal flow of surface meltwater into the subglacial drainage system, whereas supraglacial and proglacial communities shared the fewest T-RFs. Thus, the subglacial community at John Evans Glacier appears to be predominantly autochthonous rather than allochthonous, and it may be adapted to subglacial conditions. Chemical analysis of water and melted ice also revealed differences between the supraglacial and proglacial environments, particularly regarding electrical conductivity and nitrate, sulfate, and dissolved organic carbon concentrations. Whereas the potential exists for common bacterial types to be broadly distributed throughout the glacial system, we have observed distinct bacterial communities in physically and chemically different glacial environments.

PMID:
16957202
PMCID:
PMC1563615
DOI:
10.1128/AEM.00595-06
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center