Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2006 Oct 27;281(43):32344-52. Epub 2006 Sep 5.

Structural basis and functional consequence of Helicobacter pylori CagA multimerization in cells.

Author information

1
Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo 060-0815, Japan.

Abstract

Helicobacter pylori cagA-positive strains are associated with gastric adenocarcinoma. The cagA gene product CagA is delivered into gastric epithelial cells where it localizes to the plasma membrane and undergoes tyrosine phosphorylation at the EPIYA-repeat region, which contains the EPIYA-A segment, EPIYA-B segment, and Western CagA-specific EPIYA-C or East Asian CagA-specific EPIYA-D segment. In host cells, CagA specifically binds to and deregulates SHP-2 phosphatase via the tyrosine-phosphorylated EPIYA-C or EPIYA-D segment, thereby inducing an elongated cell shape known as the hummingbird phenotype. In this study, we found that CagA multimerizes in cells in a manner independent of its tyrosine phosphorylation. Using a series of CagA mutants, we identified a conserved amino acid sequence motif (FPLXRXXXVXDLSKVG), which mediates CagA multimerization, within the EPIYA-C segment as well as in a sequence that located immediately downstream of the EPIYA-C or EPIYA-D segment. We also found that a phosphorylation-resistant CagA, which multimerizes but cannot bind SHP-2, inhibits the wild-type CagA-SHP-2 complex formation and abolishes induction of the hummingbird phenotype. Thus, SHP-2 binds to a preformed and tyrosinephosphorylated CagA multimer via its two Src homology 2 domains. These results, in turn, indicate that CagA multimerization is a prerequisite for CagA-SHP-2 interaction and subsequent deregulation of SHP-2. The present work raises the possibility that inhibition of CagA multimerization abolishes pathophysiological activities of CagA that promote gastric carcinogenesis.

PMID:
16954210
DOI:
10.1074/jbc.M606172200
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center