Send to

Choose Destination
See comment in PubMed Commons below
Genetics. 2006 Nov;174(3):1135-49. Epub 2006 Sep 1.

Chromatin-modifiying enzymes are essential when the Saccharomyces cerevisiae morphogenesis checkpoint is constitutively activated.

Author information

Division of Biological Sciences, UCSD Moores Cancer Center, University of California, San Diego, California 92093-0347, USA.


Hsl7p plays a central role in the morphogenesis checkpoint triggered when yeast bud formation is impaired and is proposed to function as an arginine methyltransferase. HSL7 is also essential in the absence of the N-terminal tails of histones H3 or H4. The requirement for H3 and H4 tails may indicate a need for their post-translational modification to bypass the morphogenesis checkpoint. In support of this, the absence of the acetyltransferases Gcn5p or Esa1p, the deacetylase Rpd3p, or the lysine-methyltransferase Set1p resulted in death or extreme sickness in hslDelta mutants. These synthetic interactions involved both the activity of the chromatin-modifying enzymes and the complexes through which they act. Newly reported silencing phenotypes of hsl7Delta mirror those previously reported for gcn5Delta and rpd3Delta, thereby strengthening their functional links. In addition, synthetic interactions and silencing phenotypes were suppressed by inactivation of the morphogenesis checkpoint, either by SWE1 deletion or by preventing Cdc28p phosphorylation. A catalytically dead Hsl7p retained wild-type interactions, implying that modification of histone H3 or H4 N termini by Gcn5p, Esa1p, Rpd3p, and Set1p, but not by Hsl7p, was needed to bypass the morphogenesis checkpoint.

[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms


Grant support

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center