Format

Send to

Choose Destination
Theor Appl Genet. 2006 Nov;113(8):1449-58. Epub 2006 Sep 1.

Tall fescue genomic SSR markers: development and transferability across multiple grass species.

Author information

1
Forage Improvement Division, The Samuel Roberts Noble Foundation, Inc., 2510 Sam Noble Parkway, Ardmore, OK 73401, USA. mcsaha@noble.org

Abstract

Simple sequence repeat (SSR) markers are highly informative and widely used for genetic and breeding studies. Currently, a very limited number of SSR markers are available for tall fescue (Festuca arundinacea Schreb.) and other forage grass species. A tall fescue genomic library enriched in (GA/CT)( n ) repeats was used to develop primer pairs (PPs) flanking SSRs and assess PP functionality across different forage, cereal, and turf grass species. A total of 511 PPs were developed and assessed for their utility in six different grass species. The parents and a subset of a tall fescue mapping population were used to select PPs for mapping in tall fescue. Survey results revealed that 48% (in rice) to 66% (in tall fescue) of the PPs produced clean SSR-type amplification products in different grass species. Polymorphism rates were higher in tall fescue (68%) compared to other species (46% ryegrass, 39% wheat, and 34% rice). A set of 194 SSR loci (38%) were identified which amplified across all six species. Loci segregating in the tall fescue mapping population were grouped as loci segregating from the female parent (HD28-56, 37%), the male parent (R43-64, 37%), and both parents (26%). Three percent of the loci that were polymorphic between parents were monomorphic in the pseudo F1 mapping population and the remaining loci segregated. Sequencing of amplified products obtained from PP NFFAG428 revealed a very high level of sequence similarity among the grass species under study. Our results are the first report of genomic SSR marker development from tall fescue and they demonstrate the usefulness of these SSRs for genetic linkage mapping in tall fescue and cross-species amplification.

PMID:
16947059
DOI:
10.1007/s00122-006-0391-2
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center