Send to

Choose Destination
See comment in PubMed Commons below
J Pharmacol Exp Ther. 2006 Dec;319(3):1444-51. Epub 2006 Aug 30.

Raloxifene elicits combined rapid vasorelaxation and long-term anti-inflammatory actions in rat aorta.

Author information

Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy.


Previous studies reported the ability of raloxifene to acutely relax arterial and venous vessels, but the underlying mechanisms are controversial. Anti-inflammatory effects of the drug have been reported in nonvascular tissues. Therefore, the aim of this study was to investigate the nature of short- and long-term effects of raloxifene on selected aspects of vascular function in rat aorta. Isometric tension changes in response to raloxifene were recorded in aortic rings from ovariectomized female rats that underwent estrogen replacement, whereas long-term experiments were performed in isolated aortic smooth muscle cells (SMCs). Raloxifene (0.1 pM-0.1 microM) induced acute vasorelaxation through endothelium- and nitric oxide (NO)-dependent, prostanoid-independent mechanisms. The relaxant response to raloxifene was significantly weaker than that to 17beta-estradiol and was sensitive to neither the nonselective estrogen receptor antagonist ICI 182,780 [7,17-[9[(4,4,5,5,5-pentafluoropentyl)sulfinyl]nonyl]estra-1,3,5(10)-triene-3,17-diol] nor a selective estrogen receptor (ER) alpha antagonist. This rapid vasorelaxant effect was retained in aortic rings from rats treated with 0.1 mg/kg, but not 1 mg/kg, lipopolysaccharide, 4 h before sacrifice. In cultured aortic SMCs, raloxifene treatment (1 nM-1 microM) for 24 h reduced inducible NO synthase activation in response to cytokines. This effect was prevented by the selective ERalpha antagonist and was associated with up-regulation of ERalpha protein levels, which dropped markedly upon cytokine stimulation. These findings illustrate the relevance of classic ER-dependent pathways to the vascular anti-inflammatory effects rather than to the nongenomic vasorelaxation induced by raloxifene and may assist in the design of novel ER isoform-selective estrogen-receptor modulators targeted to the vascular system.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center