Format

Send to

Choose Destination
Biochemistry. 2006 Sep 5;45(35):10563-71.

Stability of DNA duplexes containing GG, CC, AA, and TT mismatches.

Author information

1
Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada.

Abstract

We employed salt-dependent differential scanning calorimetric measurements to characterize the stability of six oligomeric DNA duplexes (5'-GCCGGAXTGCCGG-3'/5'-CCGGCAYTCCGGC-3') that contain in the central XY position the GC, AT, GG, CC, AA, or TT base pair. The heat-induced helix-to-coil transitions of all the duplexes are associated with positive changes in heat capacity, DeltaC(p), ranging from 0.43 to 0.53 kcal/mol. Positive values of DeltaC(p) result in strong temperature dependences of changes in enthalpy, DeltaH degrees, and entropy, DeltaS degrees , accompanying duplex melting and cause melting free energies, DeltaG degrees, to exhibit characteristically curved shapes. These observations suggest that DeltaC(p) needs to be carefully taken into account when the parameters of duplex stability are extrapolated to temperatures distant from the transition temperature, T(M). Comparison of the calorimetric and van't Hoff enthalpies revealed that none of the duplexes studied in this work exhibits two-state melting. Within the context of the central AXT/TYA triplet, the thermal and thermodynamic stabilities of the duplexes in question change in the following order: GC > AT > GG > AA approximately TT > CC. Our estimates revealed that the thermodynamic impact of the GG, AA, and TT mismatches is confined within the central triplet. In contrast, the thermodynamic impact of the CC mismatch propagates into the adjacent helix domains and may involve 7-9 bp. We discuss implications of our results for understanding the origins of initial recognition of mismatched DNA sites by enzymes of the DNA repair machinery.

PMID:
16939208
DOI:
10.1021/bi060304j
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center