Format

Send to

Choose Destination
See comment in PubMed Commons below
Neuroscience. 2006 Nov 17;143(1):141-53. Epub 2006 Aug 28.

C57BL/6J mice exhibit reduced dopamine D3 receptor-mediated locomotor-inhibitory function relative to DBA/2J mice.

Author information

1
Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0559, USA. robert.mcnamara@psychiartry.uc.edu

Abstract

Previous reports have identified greater sensitivity to the locomotor-stimulating, sensitizing, and reinforcing effects of amphetamine in inbred C57BL/6J mice relative to inbred DBA/2J mice. The dopamine D3 receptor (D3R) plays an inhibitory role in the regulation of rodent locomotor activity, and exerts inhibitory opposition to D1 receptor (D1R)-mediated signaling. Based on these observations, we investigated D3R expression and D3R-mediated locomotor-inhibitory function, as well as D1R binding and D1R-mediated locomotor-stimulating function, in C57BL/6J and DBA/2J mice. C57BL/6J mice exhibited lower D3R binding density (-32%) in the ventral striatum (nucleus accumbens/islands of Calleja), lower D3R mRNA expression (-26%) in the substantia nigra/ventral tegmentum, and greater D3R mRNA expression (+40%) in the hippocampus, relative to DBA/2J mice. There were no strain differences in DR3 mRNA expression in the ventral striatum or prefrontal cortex, nor were there differences in D1R binding in the ventral striatum. Behaviorally, C57BL/6J mice were less sensitive to the locomotor-inhibitory effect of the D3R agonist PD128907 (10 microg/kg), and more sensitive to the locomotor-stimulating effects of novelty, amphetamine (1 mg/kg), and the D1R-like agonist +/- -1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8,-diol hydrochloride (SKF38393) (5-20 mg/kg) than DBA/2J mice. While the selective D3R antagonist N-(4-[4-{2,3-dichlorphenyl}-1 piperazinyl]butyl)-2-fluorenylcarboxamide (NGB 2904) (0.01-1.0 mg/kg) augmented novelty-, amphetamine-, and SKF38393-induced locomotor activity in DBA/2J mice, it reduced novelty-induced locomotor activity in C57BL/6J mice. Collectively, these results demonstrate that C57BL/6J mice exhibit less D3R-mediated inhibitory function relative to DBA/2J mice, and suggest that reduced D3R-mediated inhibitory function may contribute to heightened sensitivity to the locomotor-stimulating effects of amphetamine in the C57BL/6J mouse strain. Furthermore, these data demonstrate that comparisons between C57BL/6J and DBA/2J mouse strains provide a model for elucidating the molecular determinants of genetic influence on D3R function.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center