Send to

Choose Destination
J Mol Biol. 2006 Sep 22;362(3):430-40. Epub 2006 Aug 24.

Structural and functional analysis of Saccharomyces cerevisiae Mob1.

Author information

Program in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario Canada M5G 1X5.


The Mob proteins function as activator subunits for the Dbf2/Dbf20 family of protein kinases. Human and Xenopus Mob1 protein structures corresponding to the most conserved C-terminal core, but lacking the variable N-terminal region, have been reported and provide a framework for understanding the mechanism of Dbf2/Dbf20 regulation. Here, we report the 2.0 A X-ray crystal structure of Saccharomyces cerevisiae Mob1 containing both the conserved C-terminal core and the variable N-terminal region. Within the N-terminal region, three novel structural elements are observed; namely, an alpha-helix denoted H0, a strand-like element denoted S0 and a short beta strand denoted S-1. Helix H0 associates in an intermolecular manner with a second Mob1 molecule to form a Mob1 homodimer. Strand S0 binds to the core domain in an intramolecular manner across a putative Dbf2 binding site mapped by Mob1 temperature-sensitive alleles and NMR binding experiments. In vivo functional analysis demonstrates that Mob1 mutants that target helix H0 or its reciprocal binding site are biologically compromised. The N-terminal region of Mob1 thus contains structural elements that are functionally important.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center