Send to

Choose Destination
Cell Microbiol. 2006 Sep;8(9):1417-29.

The ESAT-6/CFP-10 secretion system of Mycobacterium marinum modulates phagosome maturation.

Author information

Department of Medical Genetics and Microbiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.


Virulence of Mycobacterium tuberculosis and related pathogenic mycobacteria requires the secretion of early secretory antigenic 6 kDa (ESAT-6) and culture filtrate protein 10 (CFP-10), two small proteins that lack traditional signal sequences and are exported through an alternative secretion pathway encoded primarily by the RD1 genetic locus. Mutations affecting the synthesis or secretion of ESAT-6 or CFP-10 attenuate the virulence of M. tuberculosis in murine models of infection. However, the specific functions of these proteins and of their secretion system are currently unclear. In this study, we isolated a mutant of Mycobacterium marinum defective in the secretion of ESAT-6 and CFP-10. The mutation was localized within MM5446, which is orthologous to Rv3871 of M. tuberculosis H37Rv and encodes an ATPase that is a component of the ESAT-6/CFP-10 secretion system. The mutant bacteria were unable to replicate within J774 macrophages although their growth in 7H9 medium was equivalent to the parental strain. Phagosome maturation and acidification were analysed in infected macrophages by confocal and electron microscopy using the late endosome/lysosome marker LAMP-1, along with various fluid-phase markers such as rhodamine-dextran and ferritin and the acidotropic dye LysoTracker Red. These studies demonstrated that while the wild-type parental strain of M. marinum primarily resides in a poorly acidified, non-lysosomal compartment, a significantly higher percentage of the MM5446 mutant organisms are in acidified compartments. These results suggest that the ESAT-6/CFP-10 secretion system plays a role in preventing phagolysosomal fusion, a novel function that accounts for the ability of bacteria to survive inside host cells. This finding provides a mechanism by which the ESAT-6/CFP-10 secretion system potentiates the virulence of pathogenic mycobacteria.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center