Send to

Choose Destination
Clin Neurophysiol. 2006 Oct;117(10):2292-301. Epub 2006 Aug 21.

Stimulus intensity and coil characteristics influence the efficacy of rTMS to suppress cortical excitability.

Author information

Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, United Kingdom.



Low-frequency repetitive transcranial magnetic stimulation (rTMS) can reduce cortical excitability. Here we examined whether inhibitory after effects of low-frequency rTMS are influenced by stimulus intensity, the type of TMS coil and re-afferent sensory stimulation.


In fifteen healthy volunteers, we applied 900 biphasic pulses of 1Hz rTMS to the left primary motor cortex (M1) at an intensity that was 10% below or 15% above resting motor threshold. For rTMS, we used two different figure-of-eight shaped coils (Magstim or Medtronic coil) attached to the same stimulator. We recorded motor evoked potentials (MEPs) evoked with the same set-up used for rTMS (MEP-rTMS) before and twice after rTMS. Using a different TMS setup, we also applied monophasic pulses to the M1 in order to assess the effects of rTMS on corticospinal excitability, intracortical paired-pulse excitability and the duration of the cortical silent period (CSP). In a control experiment, the same measurements were performed after 15min of 1Hz repetitive electrical nerve stimulation (rENS) of the right ulnar nerve.


Analysis of variance revealed an interaction between intensity, coil and time of measurement (p<0.035), indicating that the effect of 1Hz rTMS on MEP-rTMS amplitude depended on the intensity and the type of coil used for rTMS. Suppression of corticospinal excitability was strongest after suprathreshold 1Hz rTMS with the Medtronic coil (p<0.01 for both post-rTMS measurements relative to pre-intervention baseline). Regardless of the type of coil, suprathreshold but not subthreshold rTMS transiently prolonged the CSP and attenuated paired-pulse facilitation. Suprathreshold 1Hz rENS also induced a short-lasting inhibition of MEP-rTMS.


Both the stimulation intensity and the type of TMS coil have an impact on the after effects of 1Hz rTMS. Re-afferent feedback activation may at least in part account for the stronger suppression of corticospinal excitability by suprathreshold 1Hz rTMS.


These data should be considered when rTMS is used as a therapeutic means.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center