Send to

Choose Destination
See comment in PubMed Commons below
Cell Calcium. 2007 Feb;41(2):135-43. Epub 2006 Aug 21.

S100A1 decreases calcium spark frequency and alters their spatial characteristics in permeabilized adult ventricular cardiomyocytes.

Author information

  • 1Department of Internal Medicine III, Laboratory for Cardiac Stem Cell and Gene Therapy, Division of Cardiology, INF 350, University of Heidelberg, 69120 Heidelberg, Germany.


S100A1, a Ca2+-sensor protein of the EF-hand type, exerts positive inotropic effects in the heart via enhanced cardiac ryanodine receptor (RyR2) activity. Here we report that S100A1 protein (0.1microM) interacts with the RyR2 in resting permeabilized cardiomyocytes at free Ca2+-levels comparable to diastolic Ca2+-concentrations ( approximately 150nM). Alterations of RyR2 function due to S100A1 binding was assessed via analysis of Ca2+-spark characteristics. Ca2+-spark frequency, amplitude and duration were all reduced upon perfusion with 0.1microM S100A1 protein by 38%, 14% and 18%, respectively. Most likely, these effects were conveyed through the S100A1 C-terminus (S100A1-ct; amino acids 75-94) as the corresponding S100A1-ct peptide (0.1microM) inhibited S100A1 protein binding to the RyR2 and similarly attenuated frequency, amplitude and duration of Ca2+-sparks by 52%, 8% and 26%, respectively. Accordingly, the sarcoplasmic reticulum (SR) Ca2+-content was slightly increased but the stoichiometry of other accessory RyR2 modulators (sorcin/FKBP12.6) remained unaltered by S100A1. Hence, we propose S100A1 as a novel inhibitory modulator of RyR2 function at diastolic Ca2+-concentrations in rabbit ventricular cardiomyocytes.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center