Send to

Choose Destination
Eur J Pharmacol. 2006 Sep 28;546(1-3):161-70. Epub 2006 Aug 1.

Histamine-induced ion secretion across rat distal colon: involvement of histamine H1 and H2 receptors.

Author information

Institut für Veterinär-Physiologie, Justus-Liebig-Universität Giessen, Frankfurter Str. 100, D-35392 Giessen, Germany.


The aim of the present study was to investigate the effect of histamine, a product of e.g. mast cells, on short-circuit current (I(sc)) across rat distal colon. Histamine concentration-dependently stimulated an increase in I(sc), which often was preceded by a transient negative current. Neither a release of neurotransmitters nor a release of prostaglandins contributed to the histamine response. The histamine-induced increase in I(sc) was blocked by the histamine H(1) antagonist, pyrilamine, but was resistant against the histamine H(2) antagonist, cimetidine. Conversely, the histamine H(1) agonist, TMPH (2-(3-trifluoromethylphenyl)histamine), exclusively evoked an increase in I(sc), whereas the histamine H(2) agonist, amthamine, evoked only a decrease in I(sc) suggesting that stimulation of different types of histamine receptors is responsible for the two phases of the response evoked by native histamine. Histamine induces the opening of glibenclamide-sensitive Cl(-) channels and of charybdotoxin-sensitive K(+) channels in the apical membrane as demonstrated by experiments at basolaterally depolarized epithelia. A further action site is the basolateral membrane, because histamine stimulates a charybdotoxin- and tetrapentylammonium-sensitive K(+) conductance in this membrane as observed in tissues, in which the apical membrane was permeabilized with an ionophore, nystatin. The increase in I(sc) evoked by histamine was blocked after depletion of intracellular Ca(2+) stores with cyclopiazonic acid and after blockade of inositol 1,4,5-trisphosphate (IP(3)) receptors, suggesting a release of stored Ca(2+). This was confirmed by the observation that the histamine H(1) agonist TMPH induced an increase in the fura-2 ratio signal of epithelial cells within isolated colonic crypts. Consequently, the mediator histamine seems to stimulate both histamine H(1) and H(2) receptors, from which the former seems to be prominently involved in the induction of epithelial chloride secretion.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center