Send to

Choose Destination
Traffic. 2006 Sep;7(9):1243-53.

Depletion of sphingolipids facilitates endosome to Golgi transport of ricin.

Author information

Institute for Cancer Research, Department of Biochemistry, The Norwegian Radium Hospital, University of Oslo, Montebello, 0310 Oslo, Norway.


It has been previously demonstrated that depletion of cholesterol inhibits endosome to Golgi transport. Whether this inhibition is due to disruption of sphingolipid- and cholesterol-containing lipid rafts that are selected for Golgi transport or whether there is a physical requirement of cholesterol for either membrane deformations, facilitating formation of transport vesicles, or for recruitment of cytosolic constituents is not obvious. To investigate this in more detail, we have studied endosome to Golgi transport of ricin in sphingolipid-deficient cells using either a mutant cell line that does not express serine palmitoyltransferase, the first enzyme in sphingolipid biosynthesis, or a specific inhibitor, myriocin, of the same enzyme. Depletion of sphingolipids gave an increased sensitivity to ricin, and this increased sensitivity was inhibited by addition of sphingolipids. Importantly, endosome to Golgi transport of ricin, measured as sulfation of a modified ricin molecule, was increased in sphingolipid-deficient cells. No effect was seen on other pathways taken by ricin. Interestingly, cholesterol depletion inhibited endosome to Golgi transport even in cells with reduced levels of sphingolipids, suggesting that cholesterol as such is required for formation of transport vesicles. Our results indicate that the presence of sphingolipids actually limits and may function to control endosome to Golgi transport of ricin.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center