Send to

Choose Destination
See comment in PubMed Commons below
Vet Anaesth Analg. 2006 Sep;33(5):281-95.

Accuracy of a third (Dolphin Voyager) versus first generation pulse oximeter (Nellcor N-180) in predicting arterial oxygen saturation and pulse rate in the anesthetized dog.

Author information

Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, PA, USA.



To compare the accuracy of a 3rd (Dolphin Voyager) versus 1st generation pulse oximeter (Nellcor N-180).


Prospective laboratory investigation.


Eight adult dogs.


In anesthetized dogs, arterial oxygen saturation (SpO(2)) was recorded simultaneously with each pulse oximeter. The oxygen fraction in inspired gas (FiO(2)) was successively reduced from 1.00 to 0.09, with re-saturation (FiO(2) 0.40) after each breathe-down step. After each 3-minute FiO(2) plateau, SpO(2) and pulse rate (PR) were compared with the fractional arterial saturation (SaO(2)) and PR determined by co-oximetry and invasive blood pressure monitoring, respectively. Data analysis included Bland-Altman (B-A) plots, Lin's concordance correlation factor (rho(c)), and linear regression models.


Over a SaO(2) range of 33-99%, the overall bias (mean SpO(2) - SaO(2)), precision (SD of bias), and accuracy (A(rms)) for the Dolphin Voyager and Nellcor N-180 were 4.3%, 4.4%, and 6.1%, and 3.2%, 3.0%, and 4.3%, respectively. Bias increased at SaO(2) < 90%, more so with the Dolphin Voyager (from 1.6% to 8.6%) than Nellcor N-180 (from 3.2% to 4.5%). The SpO(2) readings correlated significantly with SaO(2) for both the Dolphin Voyager (rho(c) = 0.94) and Nellcor N-180 (rho(c) = 0.97) (p < 0.001). Regarding PR, bias, precision, and accuracy (A(rms)) for the Dolphin Voyager and Nellcor N-180 were -0.5, 4.6, and 4.6 and 1.38, 4.3, and 4.5 beats minute(-1), respectively. Significant correlation existed between pulse oximeter and directly measured PR (Dolphin Voyager: rho(c) = 0.98; Nellcor N-180: rho(c) = 0.99) (p < 0.001).


In anesthetized dogs with adequate hemodynamic function, both instruments record SaO(2) relatively accurately over a wide range of normal saturation values. However, there is an increasing overestimation at SaO(2) < 90%, particularly with the Dolphin Voyager, indicating that 3rd generation pulse oximeters may not perform better than older instruments. The 5.4-fold increase in bias with the Dolphin Voyager at SaO(2) < 90% stresses the importance of a 93-94% SpO(2) threshold to ensure an arterial saturation of >or=90%. In contrast, PR monitoring with both devices is very reliable.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center