Format

Send to

Choose Destination
Genomics. 2006 Dec;88(6):809-819. doi: 10.1016/j.ygeno.2006.06.014. Epub 2006 Aug 14.

Diversity and evolution of conotoxins based on gene expression profiling of Conus litteratus.

Author information

1
State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Therapeutic Functional Genes, The Open Laboratory for Marine Functional Genomics of the State High-Tech Development Program, Department of Biochemistry, College of Life Sciences, Sun Yat-sen (Zhongshan) University, 135 Xingangxi Road, Guangzhou 510275, People's Republic of China.
2
State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Therapeutic Functional Genes, The Open Laboratory for Marine Functional Genomics of the State High-Tech Development Program, Department of Biochemistry, College of Life Sciences, Sun Yat-sen (Zhongshan) University, 135 Xingangxi Road, Guangzhou 510275, People's Republic of China. Electronic address: lssxal@mail.sysu.edu.cn.

Abstract

Cone snails are attracting increasing scientific attention due to their unprecedented diversity of invaluable channel-targeted peptides. As arguably the largest and most successful evolutionary genus of invertebrates, Conus also may become the model system to study the evolution of multigene families and biodiversity. Here, a set of 897 expressed sequence tags (ESTs) derived from a Conus litteratus venom duct was analyzed to illuminate the diversity and evolution mechanism of conotoxins. Nearly half of these ESTs represent the coding sequences of conotoxins, which were grouped into 42 novel conotoxin cDNA sequences (seven superfamilies), with T-superfamily conotoxins being the dominant component. The gene expression profile of conotoxin revealed that transcripts are expressed with order-of-magnitude differences, sequence divergence within a superfamily increases from the N to the C terminus of the open reading frame, and even multiple scaffold-different mature peptides exist in a conotoxin gene superfamily. Most excitingly, we identified a novel conotoxin superfamily and three novel cysteine scaffolds. These results give an initial insight into the C. litteratus transcriptome that will contribute to a better understanding of conotoxin evolution and the study of the cone snail genome in the near future.

PMID:
16908117
DOI:
10.1016/j.ygeno.2006.06.014
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center