Format

Send to

Choose Destination
J Neurobiol. 2006 Sep 15;66(11):1253-69.

Intersegmental transfer of sensory signals in the stick insect leg muscle control system.

Author information

1
Abteilung Neurobiologie, Universität Ulm, D-89069 Ulm, Germany. wstein@neurobiologie.de

Abstract

Intersegmental coordination during locomotion in legged animals arises from mechanical couplings and the exchange of neuronal information between legs. Here, the information flow from a single leg sense organ of the stick insect Cuniculina impigra onto motoneurons and interneurons of other legs was investigated. The femoral chordotonal organ (fCO) of the right middle leg, which measures posture and movement of the femur-tibia joint, was stimulated, and the responses of the tibial motoneuron pools of the other legs were recorded. In resting animals, fCO signals did not affect motoneuronal activity in neighboring legs. When the locomotor system was activated and antagonistic motoneurons were bursting in alternation, fCO stimuli facilitated transitions from flexor to extensor activity and vice versa in the contralateral leg. Following pharmacological treatment with picrotoxin, a blocker of GABA-ergic inhibition, the tibial motoneurons of all legs showed specific responses to signals from the middle leg fCO. For the contralateral middle leg we show that fCO signals encoding velocity and position of the tibia were processed by those identified local premotor nonspiking interneurons known to contribute to posture and movement control during standing and voluntary leg movements. Interneurons received both excitatory and inhibitory inputs, so that the response of some interneurons supported the motoneuronal output, while others opposed it. Our results demonstrate that sensory information from the fCO specifically affects the motoneuronal activity of other legs and that the layer of premotor nonspiking interneurons is a site of interaction between local proprioceptive sensory signals and proprioceptive signals from other legs.

PMID:
16902990
DOI:
10.1002/neu.20285
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center