Send to

Choose Destination
Theor Appl Genet. 2006 Sep;113(5):783-99. Epub 2006 Aug 9.

Ty3/gypsy-like retrotransposon knockout of a 2-methyl-6-phytyl-1,4-benzoquinone methyltransferase is non-lethal, uncovers a cryptic paralogous mutation, and produces novel tocopherol (vitamin E) profiles in sunflower.

Author information

Center for Applied Genetic Technologies, The University of Georgia, 111 Riverbend Road, Athens, GA 30602, USA.


The m (Tph(1)) mutation partially disrupts the synthesis of alpha-tocopherol (vitamin E) in sunflower (Helianthus annuus L.) seeds and was predicted to disrupt a methyltransferase activity necessary for the synthesis of alpha- and gamma-tocopherol. We identified and isolated two 2-methyl-6-phytyl-1,4-benzoquinone/2-methyl-6-solanyl-1,4-benzoquinone methyltransferase (MPBQ/MSBQ-MT) paralogs from sunflower (MT-1 and MT-2), resequenced MT-1 and MT-2 alleles from wildtype (m(+) m(+)) and mutant (m m) inbred lines, identified m as a non-lethal knockout mutation of MT-1 caused by the insertion of a 5.2 kb Ty3/gypsy-like retrotransposon in exon 1, and uncovered a cryptic codominant mutation (d) in a wildtype x mutant F(2) population predicted to be segregating for the m mutation only. MT-1 and m cosegregated and mapped to linkage group 1 and MT-1 was not transcribed in mutant homozygotes (m m). The m locus was epistatic to the d locus--the d locus had no effect in m(+) m(+) and m(+) m individuals, but significantly increased beta-tocopherol percentages in m m individuals. MT-2 and d cosegregated, MT-2 alleles isolated from mutant homozygotes (d d) carried a 30 bp insertion at the start of the 5'-UTR, and MT-2 was more strongly transcribed in seeds and leaves of wildtype (d(+) d(+)) than mutant (d d) homozygotes (transcripts were 2.2- to 5.0-fold more abundant in the former than the latter). The double mutant (m m d d) was non-lethal and produced 24-45% alpha- and 55-74% beta-tocopherol (the wildtype produced 96% alpha- and 4% beta-tocopherol). MT-2 compensated for the loss of the MT-1 function, and the MT-2 mutation profoundly affected the synthesis of tocopherols without adversely affecting the synthesis of plastoquinone crucial for normal plant growth and development.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center