Send to

Choose Destination
See comment in PubMed Commons below
Alcohol Clin Exp Res. 2006 Aug;30(8):1297-307.

Alcohol and indinavir adversely affect protein synthesis and phosphorylation of MAPK and mTOR signaling pathways in C2C12 myocytes.

Author information

Department of Cellular and Molecular Physiology (H166), Penn State University College of Medicine, Hershey, Pennsylvania 17033, USA.



Alcohol and the antiretroviral drug indinavir (Ind) decrease protein synthesis in skeletal muscle under in vivo and in vitro conditions. The goal of the present study was to identify signaling mechanisms responsible for the inhibitory effect of ethanol (EtOH) and Ind on protein synthesis.


C2C12 mouse myocytes were incubated with EtOH, Ind, or a combination of both for 24 hours. The rate of protein synthesis was determined by [35S]methionine/cysteine incorporation into cellular protein. Phosphorylation of eukaryotic initiation and elongation factors were quantitated by Western blot analysis to identify potential mechanisms for regulating translation.


Treatment of myocytes with Ind or EtOH for 24 hours decreased protein synthesis by 19 and 22%, respectively, while a 35% decline was observed in cells treated simultaneously with both agents. Mechanistically, treatment with EtOH or Ind decreased the phosphorylation of the S6 ribosomal protein, and this reduction was associated with decreased S6K1 and p90rsk phosphorylation. Ethanol also decreased the phosphorylation of ERK1/2, mTOR, and 4EBP1, while Ind only suppressed ERK1/2 phosphorylation. Both agents inhibited the phosphorylation of Mnk1 and its upstream regulator p38 MAPK, and they decreased the amount of the active eukaryotic initiation factor (eIF) 4G/eIF4E complex. Finally, EtOH and/or Ind increased phosphorylation of the eukaryotic elongation factor (eEF)-2 by 1.6- to 6-fold. The effects of these agents were not additive, although the combination did exert a greater effect on S6K1 and eEF2 phosphorylation.


Ethanol and Ind decreased protein synthesis in myocytes and this response was associated with changes in the phosphorylation of proteins that regulate translation initiation and elongation.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center