Format

Send to

Choose Destination
See comment in PubMed Commons below
Dev Biol. 1990 Jan;137(1):125-34.

Limited topographic specificity in the targeting and branching of mammalian retinal axons.

Author information

1
Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110.

Abstract

We have studied in rats the topographic targeting of retinocollicular axons anterogradely labeled by focal retinal injections of the axon tracer DiI. We find that developing retinal axons widely mistarget along both the medial-lateral and the rostral-caudal axes of the superior colliculus (SC). In neonatal rats, labeled axons originating from injection sites in the temporal periphery covering less than 1% of the retina grow over most of the contralateral SC, suggesting that the growth cones of many axons initially fail to recognize their appropriate target region at the rostral SC border. Some of these axons correct their targeting errors and are retained; most do not and are eliminated. In neonates, peripheral nasal axons transiently develop branches throughout the SC. Branches formed by nasal axons are later restricted to a discrete terminal zone at the topographically appropriate, caudal SC border. At the neonatal stage, injections in temporal or nasal retina do result in a zone of increased labeling in the topographically correct region of the SC, but this zone is considerably larger than that labeled by a similar injection at a later stage. Thus, although the early projection is very diffuse, there is some bias for the correct region of the SC. Our findings indicate that in rats, developing retinal axons show only a limited specificity in their topographic targeting and branching. We conclude that mechanisms in addition to directed axon growth are required to establish the order characteristic of mature mammalian retinal projections.

PMID:
1688537
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center