Format

Send to

Choose Destination
See comment in PubMed Commons below
Huan Jing Ke Xue. 2006 Jul;27(7):1312-8.

[Soil carbon and nitrogen sequestration following cropland to forage grassland conversion in the marginal land in the middle of Heihe River basin, northwest China].

[Article in Chinese]

Author information

1
Linze Inland River Basin Comprehensive Research Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China. suchengyang@yahoo.com.cn

Abstract

Changes in soil organic carbon (SOC) and total nitrogen (TN) stocks were studied following croplands were converted to forage grasslands (alfalfa) for five years on the marginal land at the edge of oasis in the middle reaches of Heihe river basin. Soil from 12 paired forage land/adjacent cropland on the two soil types (Typic Torripsamments and Typic Calciorthids) was sampled at the three depths of 0-5, 5-10 and 10-20 cm and analyzed for SOC and TN, particulate organic carbon (POC) and nitrogen (PON). The studied soils had very low SOC and N concentrations. SOC stock at the 0-20 cm depth increased by 22.1%-27.8% after conversion of annually crop to perennial alfalfa for four years, and carbon sequestration rate was estimated to be on average 0.47 Mg/(hm2 x a). The greatest change in SOC stock occurred at the 0-5 cm surface layer with an increase of 32%-66%. No significant TN stock was found at the 0-20 cm depth, however, it increased at the 0-5 cm surface layer by 12.8% and 48.1% for Typic Torripsamments and Typic Calciorthids, respectively. Changes in POC and PON stocks were more significant than those in SOC and total N following conversion of crop to forage, and the percentage of distributions of POC and PON increased. POC and PON stocks at the 0-20 cm depth increased by 22.8%-42.7% and 18.6%-57.6% with the greatest increases at the 0-5 cm layer. The increase in soil C pool was mainly attributed to the increase of POC formation after the marginal lands converted to perennial forage cover. Typic Calciorthids with lower SOC concentration had relatively lower C sequestration rate but more significant effects of C and N sequestration compared with Typic Torripsamments.

PMID:
16881300
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Loading ...
    Support Center