Format

Send to

Choose Destination
See comment in PubMed Commons below
Immunity. 2006 Aug;25(2):249-59. Epub 2006 Aug 3.

Origin and T cell receptor diversity of Foxp3+CD4+CD25+ T cells.

Author information

  • 1Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta, Georgia 30912, USA.

Abstract

Foxp3(+)CD4(+)CD25(+) regulatory T cells can differentiate from Foxp3(-)CD4(+) medullary thymocytes and Foxp3(-)CD4(+) naive T cells. However, the impact of these two processes on size and composition of the peripheral repertoire of regulatory T cells is unclear. Here we followed the fate of individual Foxp3(+)CD4(+)CD25(+) thymocytes and T cells in vivo in T cell receptor (TCR) transgenic mice that express a restricted but polyclonal repertoire of TCRs. By utilizing high-throughput single-cell analysis, we showed that Foxp3(+)CD4(+) peripheral T cells were derived from thymic precursors that expressed a different TCRs than Foxp3(-)CD4(+) medullary thymocytes and Foxp3(-)CD4(+) T cells. Furthermore, the diversity of TCRs on Foxp3(+)CD4(+) regulatory T cells exceeded the diversity of TCRs on Foxp3(-)CD4(+) naive T cells, even in mice that lack expression of tissue-specific antigens. Our results imply that higher TCR diversity on Foxp3(+) regulatory T cells helps these cells to match the specificities of autoreactive and naive T cells.

PMID:
16879995
DOI:
10.1016/j.immuni.2006.05.016
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center